A counterexample to a theorem about the convexity of Powell-Sabin elements

نویسنده

  • Michael S. Floater
چکیده

The function F has three semi-infinite lines of tangent discontinuity: l1 = {(x, 0) : x ≥ 0}, l2 = {(x,−x) : x ≤ 0}, and l3 = {(x, x) : x ≤ 0} which meet at the origin. These lines, when restricted to the triangle △, divide △ into three quadrilaterals. If we further divide these quadrilaterals by the three line segments [0,x1], [0,x2], [0,x3] joining the origin to the three vertices of △ we obtain a Powell-Sabin split of △ into six triangles, shown in Figure 1. It was shown by Powell and Sabin (1977) that there is a unique C function f : △ → IR whose restriction to each of the six triangles is a quadratic polynomial and which satisfies

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A geometric criterion for the convexity of Powell-Sabin interpolants and its multivariate generalization

We derive a geometric criterion for the convexity of Powell-Sabin interpolants and present a multivariate generalization.

متن کامل

SOME PROPERTIES FOR FUZZY CHANCE CONSTRAINED PROGRAMMING

Convexity theory and duality theory are important issues in math- ematical programming. Within the framework of credibility theory, this paper rst introduces the concept of convex fuzzy variables and some basic criteria. Furthermore, a convexity theorem for fuzzy chance constrained programming is proved by adding some convexity conditions on the objective and constraint functions. Finally,...

متن کامل

The starlikeness, convexity, covering theorem and extreme points of p-harmonic mappings

The main aim of this paper is to introduce three classes $H^0_{p,q}$, $H^1_{p,q}$ and $TH^*_p$ of $p$-harmonic mappings and discuss the properties of mappings in these classes. First, we discuss the starlikeness and convexity of mappings in $H^0_{p,q}$ and $H^1_{p,q}$. Then establish the covering theorem for mappings in $H^1_{p,q}$. Finally, we determine the extreme points of the class $TH^*_{p}$.

متن کامل

Macro-elements and stable local bases for splines on Powell-Sabin triangulations

Macro-elements of arbitrary smoothness are constructed on Powell-Sabin triangle splits. These elements are useful for solving boundaryvalue problems and for interpolation of Hermite data. It is shown that they are optimal with respect to spline degree, and we believe they are also optimal with respect to the number of degrees of freedom. The construction provides local bases for certain supersp...

متن کامل

Smooth macro-elements on Powell-Sabin-12 splits

Macro-elements of smoothness Cr are constructed on PowellSabin-12 splits of a triangle for all r ≥ 0. These new elements complement those recently constructed on Powell-Sabin-6 splits and can be used to construct convenient superspline spaces with stable local bases and full approximation power that can be applied to the solution of boundary-value problems and for interpolation of Hermite data.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 14  شماره 

صفحات  -

تاریخ انتشار 1997